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Many scientific studies have been relying on a stream
of imagery observations.

I Ex 1. in situ microscopy of nanoparticle self-assembly



Many scientific studies have been relying on a stream
of imagery observations.

I Ex 2. Operando electrochemical STEM of Li-ion battery



Many scientific studies have been relying on a stream
of imagery observations.

I Ex 3. Remote sensing imagery (photo credit: Planet lab)
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Amount of images collected each time is huge.

I in situ microscopy: small-scale changes occur in a short
time scale. Capturing such fast changes would need high
frame-rate measurements.

Data rate = 16MBs per image× 1000 images per sec.
= 16GBs per sec

I Planet lab’s constellation of 88 satellites: each collects
over 2 million km2 per day with a resolution of 3-5 meters.

Data rate = 88× (2× 106km2 per day ∗ 40,000 pixels per km2)

≈ 20 million GBs per day.
≈ 230 GBs per sec.



In situ analysis is typically preferred for high data rates.

I limited network bandwidth
e.g. local disk writing ≈ 100 to 600 MBs per sec.
e.g. satellite to ground station ≈ 200 MBs per sec.

I time-to-analysis requirement
It takes too much time for data transfer, storage and batch
processing.

In situ analysis enables realtime or near realtime analysis
of data.



Today we present an approach for in situ analysis of
high frame-rate imagery observations.

The new approach aims for near real-time analysis of
I Detect Changes: locate visual changes, e.g. appearance

or disappearance of objects, morphology changes, color
changes, texture changes,...

I Track Changes: associate visual changes obtained at
various instances to form a track

I Find Longitudinal Patterns: find long-time range patterns in
tracked changes.



Robust Change Detection



Formulating change detection

Let Y t denote a m × n matrix representing an input image
obtained at time t . The input matrix can be decomposed into
three component matrices of the same size,

= + +

Yt B (background) Ft (changes) Et (random var.)

We want to estimate F t .



When B is assumed unchanged,

The likelihood maximization for F t can be pursued.

MinimizeB,{F t}

T∑
t=1

||E t ||2F

Y t = B + F t + E t , t = 1, ...,T .

I ||F t ||1 ≤ µ: F t is sparse.

This is a batch processing to fit F t all together. Since more data
are used, this provides more robust estimates when B does not
change in time, since less data are used.



When local changes of background is expected,

Local weights ωt can be posed for local likelihood maximization.
For each time t ′,

MinimizeB,F t′

t ′+δ∑
t=t ′−δ

ωt ||E t ||2F

Y t = B + F t + E t , t = t ′ − δ, ..., t + δ.

I B might change in time.
I ||F t ||1 ≤ µ.

δ dilemma: timeliness vs. robustness of estimation
I δ = T : batch processing, more robust
I 0 < δ < T : grouped processing, less robust
I δ = 0: frame-by-frame processing, least robust



Can we maintain robustness of estimation for δ = 0?
Degradation of robustness with small δ can be made up using
prior knowledge on B in the form of a cost function, J(B).

I Example: Background is very simple and smooth for many
microscope images. J(B) can be a smoothness measure.

(a) original (b) background estimated

(c) foreground estimated (d) aggregate detection



Can we maintain robustness for δ = 0?

Use that prior knowledge on B to improve robustness of
estimation

First trial: For each time t , optimize the regularized local
likelihood

MinimizeB,F t ||E t ||2F + λJ(B)

Y t = B + F t + E t .

||F t ||1 ≤ µ.

I B may be better guided by the prior cost function.



The trial gave a poor estimate.

I δ = 0 case is not robust yet. The estimation of B is quite
affected by F t and E t .
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The trial gave a poor estimate.
I The increase of the weight on the prior cost (i.e. λ) can

cause significant biases.
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We borrow the concept of robust regression in
statistics to increase the robustness.

In statistics, the tendency of the square loss ||E t ||2F being
dominated by outliers (such as sudden changes) was
discussed and addressed by changing it with the robust loss
function, e.g. the Huber loss, LH ,

Minimize LH(E t) + λJ(B)

Y = B + F t + E t

||F t ||1 ≤ µ.

The estimated B is less sensitive to the choice of F t and E t .
The solution approach of the estimation can be found at our
paper Vo and Park (2016).



High Contrast Example (Gold NP)

(a) original



High Contrast Example (Gold NP): Output

(d) foreground detections



High Contrast Example (Gold NP): Output

(a) original (b) background est.

(c) foreground est. (d) foreground detections



High Contrast Example (Silver NP)

(a) original



High Contrast Example (Silver NP): Output



High Contrast Example (Silver NP): Output

(a) original (b) background est

(c) foreground est (d) particle detection



Medium Contrast Example (Silver NP)

(a) original



Medium Contrast Example (Silver NP): Output

(d) foreground detections



Medium Contrast Example (Silver NP): Output

(a) original (b) background est.

(c) foreground est. (d) foreground detections



Low Contrast Example (Protein)

(a) original



Low Contrast Example (Protein): Output

(d) aggregate detection



Low Contrast Example (Protein): Output

(a) original (b) background estimated

(c) foreground estimated (d) aggregate detection



Low Contrast Example (Micelle)

(a) original



Low Contrast Example (Micelle): Output



Low Contrast Example (Micelle): Output

(a) original (b) background est

(c) foreground est (d) particle detection



Low Contrast Example (NP)

(a) original



Low Contrast Example (NP): Output

(d) foreground detections



Low Contrast Example (NP): Output

(a) original (b) background est.

(c) foreground est. (d) foreground detections



Some Other Examples

(a) input image (b) estimated background (c) estimated foreground



Track Changes



Associate visual changes obtained at various
instances to form a track.

The association is represented as a digraph G = (V ,E), where
v ∈ V is a node representing a visual change, and e ∈ E is an
edge.

Change

Split

MergeAppear

s t

Disappear



An association a ∈ A is not only an edge but also a
collection of edges,

1. Change by 1-to-1 association e ∈ E
2. Merge by m-to-1 associations {e ∈ E : sink(e) = v}
3. Split by 1-to-n associations {e ∈ E : source(e) = v}
4. Appear by an edge from a source node.
5. Disappear by an edge from a sink node.

Change

Split

MergeAppear

s t

Disappear



Data association problem is a problem of finding G
that minimizes the total association cost

Minimize
∑
a∈A

ca · za

za ∈ {0,1}
{za;a ∈ A} ∈ C.

I za ∈ {0,1} represents the activation of a ∈ A.
I ca is the cost of the activation.



Only 1-to-1 associations were considered in literature.
A few exceptions are

I Jaqaman et al. (2008) and Henriques et al. (2011) studied
some linear optimization models to consider one-to-two or
two-to-one associations.

I Khan et al. (2005a,b); Kreucher et al. (2005); Ng et al.
(2007) studied some sequential Monte Carlo approaches.
As the number of foreground objects increases, the state
space becomes high dimensional, so the approaches are
not scaling very well.



We formulate and solve a general data association
problem

Model Assumptions
M-way association: The number of foreground objects involved

in an association is at least 1 and at most M.
Imperfect detection: A foreground detection algorithm is not

perfect. Some v ∈ V can be faulty detections.



Binary integer programming problem can be
formulated and solved.

The objective is to minimize the total cost of associations

Min
∑

a∈A1,1

zaca +
∑

a∈Am,1

zaca +
∑

a∈A1,n

zaca +
∑

a∈Am,n

zaca

subject to
I In-Degree Constraint for node v: 1 ≤

∑
source(e)=v ze ≤ M

I Out-Degree Constraint for node v: 1 ≤
∑

sink(e)=v ze ≤ M
I Relationship between ze and za:

za ≤ ze′ for e′ ∈ a∑
e′∈a

(ze′ − 1) + 1 ≤ za.



Using vector notations,

Minimize cT
1 z1 +

∑
m

cT
m1zm1 +

∑
n

cT
n2zn2+

∑
m,n

dT
mnymn

A1z1 ≥ b1
(1a)

Am1z1 +Bm1zm1 ≥ bm1
(1b)

An2z1 + Cn1zn2 ≥ bn2
(1c)

Pmnzm1 + Qmnzn2 +ymn ≥ 1
(1d)

Pmnzm1 −ymn ≥ 0
(1e)

Qmnzn2 −ymn ≥ 0
(1f)

z1 ∈ Bp1 , zm1 ∈ Bpm1 , zn2 ∈ Bpn2 ,ymn ∈ Bqmn.



Batch Solution: We solve the Lagrange dual relaxation
of the BIP.

Solving the binary optimization problem is NP-hard! We used
the special structure of the problem to find an integer-valued
suboptimal.

Totally 
Unimodular!



Batch Solution: We solve the Lagrange dual relaxation
of the BIP.

Repeat (SP) and (MP) until convergence.
(SP) Solve for z1, zm1, zn2,ymn with fixed Lagrange multipliers.

Min cT
1 z1 +

∑
m

cT
m1zm1 +

∑
n

cT
n2zn2 +

∑
m,n

dT
mnymn

+
∑

m λT
m1(bm1 − Am1z1 − Bm1zm1)

+
∑

n λ
T
n2(bn2 − An2z1 − Bn2zn2)

A1z1 ≥ b1

Pmnzm1 + Qmnzn2 +ymn ≥ 1
Pmnzm1 −ymn ≥ 0

Qmnzn2 −ymn ≥ 0
0 ≤ z1, zm1, zn2,ymn ≤ 1

(MP) Improve the Lagrange multipliers λm1,λn2 ≥ 0:

Max
∑

m

λT
m1(bm1 − Am1z∗1 − Bm1z∗m1) +

∑
n

λT
n2(bn2 − An2z∗1 − Bn2z∗n2)



Near realtime solution

The previous solution approach associates all image frames in
one step.

I Pros: It pursues for global optimality.
I Cons: This is a batch processing so far from realtime

processing.

Near realtime solution can be sought by solving the BIP in a
frame-by-frame fashion.

I Cons: When miss detections or faulty detections occur, the
frame-by-frame association incurs significant
fragmentations in traces.

I We combined the frame-by-frame data association with
delayed data association strategy to fix this issue.



Demonstration (Real Case)
Solution phase silver nanoparticle growth was imaged by in situ
transmission electron microscopy for 89 seconds.

time = 40 time = 44 time = 48 time = 52 time = 56

time = 60 time = 64 time = 68 time = 72 time = 76



Demonstration (Real Case)
We applied our method to track particle interactions; Evaluated
the accuracy of the data association over the manually
inspected 18 trajectories.

(b)

(a)

(c)



Demonstration (Real Case)
The data association errors were evaluated against the
manually inspected 18 trajectories.

Type Our method Henrique Jaqaman Yu
FN FP FN FP FN FP FN FP

1-to-1 0.033 0.038 0.086 0.061 0.491 0.261 0.507 0.286
1-to-m 0.020 0.109 0.100 0.167 0.960 0.800 1.000 1.000
n-to-1 0.035 0.098 0.114 0.137 0.895 0.586 0.991 0.909
Faulty 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.013
Birth 0.000 0.000 0.000 0.750 0.333 0.833 0.333 0.952
Death 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000

Table: Real Microscope Data - Data association errors of our method
with M = 3, Henriques et al. (2011), Jaqaman et al. (2008), and Yu
and Medioni (2009).



The proposed approach has
been successfully applied to
support high impact science

research.



Examples of Applications



Broad use in microscopy



Closing Remarks

I Be able to analyze very low contrast images at the rate of
ten images per second.

I This corresponds to processing rate of 160 MB per second.
I Be able to analyze moderate speed process in real-time.
I Burning a hardware logic for acceleration may help further

increase the processing rate.



Thanks for general supports!
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